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1 Introduction 

Oakland University is proud to enter Botzilla into the 19th annual Intelligent Ground Vehicle 

Competition!  Botzilla is a very rugged platform, featuring four-wheel drive and double Ackermann 

steering control (Section 3.2).  The four-wheel drive allows it to handle any terrain encountered at 

IGVC with ease, and the double Ackermann steering control allows for strafing maneuvers impossible 

to achieve with conventional skid steer systems, while also being able to make tighter turns than a 

single Ackermann setup would be capable of. 

In the same way Botzilla’s physical platform is more robust and reliable than previous years’ 

entries, the software platform running on Botzilla is also much faster and more reliable.  This year, all 

high-level software has shifted from a Windows computer running Matlab to an Ubuntu computer 

running Robot Operating System (Section 5.3), and all low-level software and sensor interfacing has 

shifted from microcontrollers to FPGAs (Section 5.1).  In addition, the obstacle detection system solely 

uses a monocular camera system, without the need of a lidar.  

1.1 Team Organization 

Oakland University has seen an increase in membership since last year, thanks to the efforts of the 

team to increase its visibility on campus.  The team consists of 15 members, with a composition of 

about 50% graduate students and 50% undergraduate students, majoring in mechanical, electrical and 

computer engineering.  Figure 1 shows the organization of the team and how the responsibility is 

distributed.  Each major sub-system of Botzilla has its own captain responsible for taking the lead role 

in its development.  The captains were in charge of managing the rest of the group and guiding them 

towards completion of their respective components.  It is estimated that about 1500 person-hours were 

invested in the development of Botzilla. 
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1.2 Design Process 

A classic ‘V-Model’ design 

process was followed to develop 

Botzilla, shown in Figure 2.  After 

deciding on the concept of Botzilla, 

the requirements to achieve it were 

defined and a design was 

formed.  After implementing the 

design and integrating the various 

components, a rigorous test cycle 

began, where consistent failure 

points were identified and rectified 

through minor adjustments or larger 

design modifications. 

2 Innovations 

Below is a list of the main innovative aspects of Botzilla’s design.  They are listed in brief here, 

and discussed in more detail in their respective sections. 

� Stand-alone monocular vision-based obstacle detection (Section 5.2) 
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Figure 1: Chart outlining the team’s organization. 
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Figure 2: V-Model design process. 
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Figure 4: Chassis with cover 

Figure 3: Botzilla's chassis  

� Robot Operating System (ROS) software integration (Section 5.3) 

� Mapping of the robot’s environment (Section 6.1) 

� D* Map-based path planning algorithm (Section 6.2) 

� Custom H-Bridge design and fabrication (Section 4.1) 

� Ackermann steering actuation on both front and rear wheels (Section 3.2) 

� FPGA sensor data gathering and drive control system (Section 5.1) 

3 Mechanical Design 

3.1 Chassis 

The chassis of the robot is a simple ladder style design.  This 

allowed for easy assembly and a rugged structure. The payload carrier 

is under the main chassis, allowing the quick installation and removal 

of the competition payload.  A significant portion of Botzilla is built 

from aluminum in order provide weight reductions.  The use of steel 

was kept to a minimum; used only when strength or ease of 

fabrication dictated the need for it.  The use of polycarbonate 

Plexiglas and hollowing of the 

driveshafts is another attempt to reduce the overall weight of Botzilla.  

The use of lightweight tubing for the camera mount also helped to 

reduce the mass of the robot.  Further weight reduction is planned for 

the near future in the area of hubs and further thinning of the 

driveshafts.  All of this was done with minimal weight and 

dependability as the main design criteria. 
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3.2 Drive Train 

There are two significant design features implemented in the 

chassis of Botzilla.  The robot features all-wheel drive and double 

Ackermann steering, where the front and rear wheels are 

independently rotated by a linear actuator.  The use of four-wheel 

drive allows for consistent locomotion while traversing irregular 

terrain.  The four-wheel drive also allows the robot to ascend steep 

inclines with relative ease.  This design allows the use of a 

relatively closed pattern tire while still providing excellent traction 

under adverse conditions, thereby minimizing the impact on the environment. 

The double Ackermann steering is similar to that of a monster truck. 

It allows both ends to be turned either independently or 

simultaneously.  A linear actuator drives the left side which is connected 

to the opposite side through a tie rod link.  The link has opposing 

threads on the ends allowing toe adjustments to be made.  The double 

Ackermann steering allows for decent mobility in confined quarters 

while maintaining control of Botzilla under extreme conditions. 

 

4 Electrical Design 

4.1 H-Bridges 

Botzilla’s H-bridges are completely custom-designed PCBs.  Based on past experience with other 

H-bridges such as IFI’s Victor series, it was desired to use an H-bridge that is more flexible, robust, 

and capable of chopping the motor power at a much higher frequency.  Key features of the H-bridges 

are: 

� Reverse battery protection 

� On-board fuses 

� Fan control 

� Current sense 

� Temperature monitoring 

� Serviceable components 
Figure 7: Custom H-bridge 

Figure 6: Drive axle 

Figure 5: Steering mechanism 
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The reverse battery protection utilizes a P-channel 4 mΩ low Rds-on power MOSFET.  The current 

sense uses a Hall-effect sensor to monitor current without having the resistance drop of a typical 

current sense resistor arrangement.  Temperature monitoring ensures that the H-bridge is kept within a 

safe thermal window, and allows dynamic fan control to save power.  The H-bridge itself is composed 

of N-channel MOSFETs, with each leg paralleled to further reduce Rds-on.  A conventional single-

channel PWM signal controls the speed and direction of the H-bridge output. 

4.2 Sensors 

Botzilla is equipped with an array of sensors that allow it to detect obstacles around it, compute its 

location, heading and speed, and be operated in a safe and reliable manner.  The sensor array consists 

of: 

� NovaTel FlexG2-Star GPS receiver, which provides accurate GPS fixes within 1 meter 

� Honeywell HMC5843 digital compass, which provides raw three-axis magnetometer data 

from which tilt-corrected heading measurements can be made 

� Analog Devices ADIS16350 six-axis IMU 

� U.S. Digital E3 optical wheel encoders, providing wheel speed data for closed loop drive 

control, as well as odometry for the mapping algorithm 

� DX5E wireless aircraft joystick, whose standard RC signals are used for embedded manual 

control, as well as a wireless E-Stop. 

4.3 Computing Hardware 

Botzilla’s computing system is distributed between a Dell Latitude E5410 laptop running Ubuntu 

and ROS (Section 5.3), and a Xilinx Spartan3E FPGA, employing a MicroBlaze soft processor and 

custom hardware written in VHDL (Section 5.1).  The two communicate with each other over a single 

RS232 link, through which the FPGA transmits sensor data to the computer, and the computer 

transmits motor control messages to the FPGA.   

For the JAUS challenge, an external computer communicates with the Ubuntu laptop over Wi-Fi, 

and relays the processed JAUS commands.  The Ubuntu laptop also responds back with the data 

reports necessary to satisfy the requirements of the JAUS challenge. 

4.4 Power Distribution 

Botzilla’s 24V power source is derived from four 12V AGM lead acid batteries, arranged with two 

parallel sets in series, with a total charge capacity of about 60 AH.  The 24 volts are wired directly to 
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the H-bridges, which then pulse power to the motors according to the PWM control signals coming 

from the FPGA.  The FPGA board takes a 12 volt power input, coming from a switching DC-DC step 

down converter.  The FPGA board has its own on-board switching regulator that powers the small 

sensors connected to it, as well as the Spartan3E itself. 

 

4.5 Safety Considerations 

Botzilla is a very powerful vehicle with lots of torque and is capable of slightly over 10 mph.  As 

such, it has potential to be dangerous.  Therefore, many precautions were taken into account when 

designing the emergency stop system, where many layers of protection exist.  Besides the conventional 

turn-to-release E-stop switch, the DX5E joystick is capable of disabling the motor output wirelessly 

from up to a couple hundred feet away.  In addition, the drive control system automatically turns off 

the motors if it fails to receive commands from the computer after a short time, and a software-handled 

joystick functions as a dead-man switch for the vehicle when in testing mode. 

5 Software Design 

This section describes the computing system used on Botzilla.  As described in Section 4.3, all 

computation is distributed between a laptop and a FPGA.  A diagram of how the major software 

elements interact with each other is shown in Figure 10, and the subsequent sections discuss them in 

detail. 

  

24 VDC 

H-Bridges 

12V DC-DC 

Motors 

FPGA 

Figure 8: High-level diagram of how power is distributed to the built-in components 



8 
 

5.1 Low-Level Hardware/Software 

All of Botzilla’s low-level 

functionality is implemented on a 

single 1.2 million gate-equivalent 

Spartan 3E FPGA, utilizing custom 

hardware components developed in 

VHDL, and a Xilinx MicroBlaze 

soft processor running hand-written 

C code.  The system was designed 

to process all the data from the 

sensors listed in Section 4.2, extract 

the measurements, assemble the 

data into a convenient packet and 

transmit it all to the computer.  At 

the same time, the drive control 

algorithms interpret high-level 

vehicle motion commands from the 

computer and apply closed-loop steering control to the motors.  Figure 9 shows a block diagram of the 

FPGA architecture.   

� Data Gathering 

Custom hardware was developed in VHDL to gather the data from all the sensors.  These hardware 

components consist of: 

� Six parallel PWM  channels, capable of independent control of each motor 

� One NMEA GPGGA message parsing component that extracts the vehicle’s current GPS 

coordinates from a continuous stream of ASCII data from the receiver 

� One I2C controller to request data from the compass and extract the heading data from the 

resulting transmissions 

� Two SPI controllers used to interface to the IMU and external A/D hardware module 
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Figure 9: Custom FPGA Architecture 
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� Eight parallel input capture channels to grab 

quadrature data from the four optical wheel 

encoders 

All the custom hardware is interfaced to the 

MicroBlaze processor by means of a 32-bit wide 

processor bus, clocked at 50 MHz.  The processor 

addresses each hardware component in sequence and 

refreshes its measurement from each sensor.  At a rate 

of 20 Hz, it packages all the data into a 22-byte packet 

and transmits it to the computer. 

� Drive Control 

Botzilla’s drive system consists of four DC motors 

rotating the wheels of the vehicle, and two DC linear 

actuators controlling the steering mechanism on the 

front and rear wheels.  Making use of the wheel encoder 

data being gathered by the FPGA, the MicroBlaze 

processor applies PI control to the wheel motors to 

match speed commands from the computer.  Likewise, 

the potentiometers on the steering motors are used by 

the MicroBlaze processor to apply a lead-lag 

compensator to track angular position commands from 

the computer. 

5.2 High-Level Software 

� Lane and General Obstacle Detection 

Detecting obstacles and lines in the robot’s view 

requires a robust vision system able to differentiate lines 

and obstacles from the grass background. In direct 

contrast to making a robust system, the robot’s vision 

system also needs to be responsive enough to react to 

the changing scenery as the robot navigates through the course. Any algorithms used will have to 

satisfy both constraints.  

Figure 10: Block diagram of software 
component interaction 
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To satisfy the requirements of robust differentiation and good 

responsiveness a system was developed that uses multiple fast 

algorithms that vote on whether or not an obstacle is detected. The 

system consists of three stages: pre-processing, detection, and voting. 

Pre-processing smoothes the image and converts it to the HSV 

domain. In the HSV domain, shadows are present mainly in the value 

component, setting this to a fixed number allows object detection 

algorithms to be shadow agnostic. The second stage, detection, is 

performed using multiple simple algorithms which later are combined 

to vote on the presence of obstacles on a per-pixel basis.  

Each algorithm outputs a binary image that is its vote for each 

pixel on the pixel grid. Algorithms that are used consist of standard 

implementations of Canny edge detection, auto thresholding, frame differencing, and a custom 

developed median windowing algorithm. The final stage, voting, takes each voting image and 

determines the majority.  During testing the vision proved reliable enough to replace the lidar 

functionality entirely. 

� Image Transformation 

In order to create a monocular vision 

system capable of acting as a suitable lidar 

replacement, the distance perception of such a 

system must be very accurate.  A very general 

system to do these transformations was 

formed, and only assumes that the objects 

being detected are on a flat surface, which is a 

realistic assumption for situations like IGVC.   

By making some simple calibration 

measurements, such as the height and pitch of the camera, etc., a transformation is defined to project 

individual pixels into an azimuth and zenith rotational axis offset from the center of the camera.  A 

non-linear trigonometric transformation function is then used to project the angle offsets down onto the 

ground plane.  These points are then rotated and shifted into the vehicle’s coordinate frame to simulate 

Cartesian obstacle location data obtained from a lidar scan.  An illustration of this imitated lidar scan is 

shown in Figure 12.  More details about the transformation can be found in [2]. 

Figure 12: ROS visualization of the imitated lidar scan 

Figure 11: Example of voter-
based obstacle detection 
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� Kalman Filter Sensor Fusion 

The role of the Kalman Filter is to input the raw GPS fix, compass and wheel encoder data and fuse 

the readings together to provide a better estimate of the vehicle’s position and heading angle in the 

global frame.  Sensor fusion with a Kalman Filter is a very powerful technique, since it is capable of 

modeling the variance of measurement signals and then deciding how much to “trust” each sensor to 

come up with a very nice estimate.  Specifically, the Kalman Filter on Botzilla is designed to: 

� Use GPS course-over-ground heading reading to correct the bias in the compass heading 

measurement 

� Use compass heading measurement to eliminate the meandering GPS heading when 

traveling slowly or during a GPS outage 

� Use wheel encoder measurements to provide odometry that helps filter wandering GPS data 

5.3 ROS Integration 

Botzilla’s high level software system uses Robot Operating System (ROS) as its base interfacing 

layer. ROS provides many features that aided efficient development of an IGVC ready robot including: 

pre-built robotics libraries, standard sensor drivers, support for simple message passing between 

processes, debugging and system visualization facilities, and dynamic reconfiguration. Additionally, 

the wealth of documentation for different features in ROS allowed the team to understand and 

implement non-trivial concepts quickly.  

5.4 Logging 

One of the many features that ROS has built in software libraries for is a logging system. 

This allows the team to log any of the data being passed in the system, including camera, GPS, and 

other sensor data. In typical use, the robot is human driven along a course similar to that of IGVC 

while recording data. The “raw” data is later played back using another component of the logging 

system, which emulates the data stream of real sensors. This enables the software team to test new 

algorithms and gauge their effect on the full system while sitting at their desks. 

5.5 JAUS 

The JAUS Protocol was implemented in Microsoft Visual Basic .NET, where a class was written 

for each JAUS message. In each class, parameters can be set, an array of bytes can be parsed, and the 

message can be converted into a byte array. A class was written for each JAUS service as well. 

Services that require inherits are passed a handle to the required services on creation. 
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To test the JAUS implementation, a separate COP simulator was programmed using the same 

language and classes. The COP simulator can manually send all of the messages required for the 

competition and display the messages received. The COP simulator also has a map on which way-

points can be set and graphed, and the position history of the robot can be plotted. All raw packets are 

saved to a debug window and a log file to help diagnose problems. 

6 Artificial Intelligence 

6.1 Mapping 

Botzilla uses mapping to recall where it has been so that it can decide its route in the autonomous 

challenge.  The mapping algorithm used is provided in the karto package from ROS. The package uses 

a technique called sparse bundle adjustment for fast and accurate determination of a map from scan 

and localization data [3]. The algorithm is capable of loop closure, which allows the repeated paths to 

be detected as the same path to improve path detection. This will be used to remember the obstacles 

encountered on previous runs for more accurate path planning on consequent runs.  

6.2 Path Planning 

The path planning system integrates a short-term reactionary obstacle avoidance system based on a 

fuzzy rule-based algorithm, and a long-term deliberate obstacle avoidance system based on the map 

output from Section 6.1.   

� Reactionary Fuzzy Logic Controller 

The role of the reactionary component of the path planning system is to provide effective first-time 

navigation of an unknown environment toward the goal point, and to augment the map-based path 

planning algorithm and adapt to uncertainties and error in the map. 

This reactionary system is implemented using the very simple, yet incredibly powerful technique of 

fuzzy logic control.  A set of qualitative rules is formed based on how the vehicle should respond in 

certain situations.  By assigning quantitative values to the relative degree to which the qualitative 

statements describe the current situation, a real-world decision can be arrived at to best satisfy the 

rules. 

The goal point, as well as the imitated lidar scan (Section 5.2) are input to the fuzzy system, where 

the location of the goal relative to the vehicle and the immediate occupancy of the vehicle’s 

surroundings govern both the steering and velocity through the set of fuzzy rules. 
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� Deliberate Map Navigation 

To compute an optimal path through the map of the environment, a D* algorithm ROS package is 

employed, developed by Michael Otte of the University of Colorado [1].  The package takes in a goal 

point, standard occupancy grid message, and a pose estimate of the robot, and computes an optimal 

path through the given map.  This path is broadcasted to the rest of the system via a standard 

navigation stack message. 

 However, to account for error in the map and other uncertainties, proper combination with the 

reactionary system is necessary.  To solve this, critical points of the D* path are chosen as intermediate 

waypoints to the reactionary system. 

7 Performance Predictions 

� Maximum Speed 

Botzilla’s motors spin at 157 RPM at nominal load, so combined with 15 inch diameter wheels, the 

resulting maximum speed is 10.3 mph.  This estimate correlates with the observed performance. 

� Ramp Climbing Ability 

At nominal load, the drive motors provide 101 in-lbs of torque.  Assuming a realistic vehicle 

weight of 175 lbs, this corresponds to a max slope of 18 degrees.  However, experiments have shown 

that Botzilla can handle much steeper slopes, up to about 30 degrees, although not at the nominal load 

of the motors. 

� Reaction Time 

The ROS system running on the laptop gathers new sensor readings from the FPGA at 20Hz, and 

processes camera frames and extracts obstacle locations at 15 frames per second.  The artificial 

intelligence systems were designed to be able to handle this frequency easily, thereby allowing the 

robot to make new decisions at the slowest sensor sampling rate 15 Hz = 66.7 ms. 

� Battery Life 

The AGM batteries on Botzilla provide a total of 60 AH.  The sensors and FPGA consume 2 amps.  

Experiments have shown that the steering motor current draw averages 3 amps under normal operating 

conditions, and that the drive motors consume a total of 25 amps maximum in a grass environment 

typically encountered at IGVC.  Based on these observations, total battery life is approximately 2 

hours.  
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� Obstacle Detection Range 

With the configuration of the camera, obstacles can be detected up to a maximum of 24 feet away, 

although it was experimentally determined that vision measurement data becomes most reliable within 

17 feet.  The camera configuration also makes the front of the vehicle visible.  This allows for the 

vision system to detect lines and obstacles up to 3 feet to either side of the front wheels, thereby 

minimizing the size of critical blind spots. 

� GPS Accuracy 

Under normal conditions, the Novatel FlexPackG2-Star GPS receiver is accurate to within 1 meter, 

which is enough positional accuracy to reach the small waypoints on the GPS Challenge 

course.  However, since the mapping algorithm (Section 6.1) is dependent on both the position and 

more noisy ground heading estimate of the GPS, the Kalman Filter (Section 5.2) is used to fuse the 

GPS with the other sensors. 

8 Cost Analysis 

A breakdown of the cost of the components on Botzilla is shown in Table 1. 

Table 1: Cost breakdown of components 

Item Cost Cost to Team 

FlexG2-Star GPS Unit $1,000 $1,000 

SICK LMS-200 Lidar $6,000 $01 

Dell Latitude E5410 Laptop $800 $800 

Analog Devices ADIS16350 IMU $550 $02 

Other Sensors $400 $400 

(4) 12V AGM Batteries $375 $03 

Power Electronics $600 $600 

Fiberglass Body $2,000 $04 

Electromechanical Components $1,000 $1,000 

Frame Materials $1,000 $1,000 

Total $14,225 $5,300 
 

 

 

                                                
1 Re-used from previous vehicle 
2 Donated from Dataspeed, Inc. 
3 Part of a larger donation from Battery Giant, Rochester Hills 
4 Custom-made and donated by Sankuer Composite Technologies 
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9 Conclusion 

Botzilla has proven to be very rugged, efficient and reliable, performing well while driving on any 

kind of terrain.  The new artificial intelligence design shows promising results, and the Oakland 

University team has great confidence going into this year’s competition. 
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