

Oakland University Proudly Presents:

IGVC 2011

Student Members:

Micho Radovnikovich – PhD, Systems Engineering

Lincoln Lorenz – PhD, Electrical Engineering

Kirk McGuire –Senior, Electrical Engineering

Kevin Hallenbeck – Sophomore, Computer Engineering

Scott Marginet – Senior, Mechanical Engineering

Mike Truitt – Junior, Electrical Engineering

Paul Abdo – Senior, Electrical Engineering

Todd Perkins – M.S., Electrical Engineering

Pranab Bade – Senior, Electrical Engineering

Varun Vummaneni – M.S., Electrical Engineering

Renee’ Kolleth – Senior, Biology

Kiran Iyengar – M.S., Systems Engineering

Walid Elsady – M.S., Electrical Engineering

Honorary Alumni Members:

Steve Grzebyk, Pavan Vempaty

I certify that the engineering design present in this vehicle is significant and equivalent to
work that would satisfy the requirements of a senior design or graduate project course.

Signed,

_______________________________, Dr. Ka C. Cheok, Faculty Advisor

2

1 Introduction

Oakland University is proud to enter Botzilla into the 19th annual Intelligent Ground Vehicle

Competition! Botzilla is a very rugged platform, featuring four-wheel drive and double Ackermann

steering control (Section 3.2). The four-wheel drive allows it to handle any terrain encountered at

IGVC with ease, and the double Ackermann steering control allows for strafing maneuvers impossible

to achieve with conventional skid steer systems, while also being able to make tighter turns than a

single Ackermann setup would be capable of.

In the same way Botzilla’s physical platform is more robust and reliable than previous years’

entries, the software platform running on Botzilla is also much faster and more reliable. This year, all

high-level software has shifted from a Windows computer running Matlab to an Ubuntu computer

running Robot Operating System (Section 5.3), and all low-level software and sensor interfacing has

shifted from microcontrollers to FPGAs (Section 5.1). In addition, the obstacle detection system solely

uses a monocular camera system, without the need of a lidar.

1.1 Team Organization

Oakland University has seen an increase in membership since last year, thanks to the efforts of the

team to increase its visibility on campus. The team consists of 15 members, with a composition of

about 50% graduate students and 50% undergraduate students, majoring in mechanical, electrical and

computer engineering. Figure 1 shows the organization of the team and how the responsibility is

distributed. Each major sub-system of Botzilla has its own captain responsible for taking the lead role

in its development. The captains were in charge of managing the rest of the group and guiding them

towards completion of their respective components. It is estimated that about 1500 person-hours were

invested in the development of Botzilla.

3

1.2 Design Process

A classic ‘V-Model’ design

process was followed to develop

Botzilla, shown in Figure 2. After

deciding on the concept of Botzilla,

the requirements to achieve it were

defined and a design was

formed. After implementing the

design and integrating the various

components, a rigorous test cycle

began, where consistent failure

points were identified and rectified

through minor adjustments or larger

design modifications.

2 Innovations

Below is a list of the main innovative aspects of Botzilla’s design. They are listed in brief here,

and discussed in more detail in their respective sections.

� Stand-alone monocular vision-based obstacle detection (Section 5.2)

Leadership
Micho

Radovnikovich

Mechanical

Kirk McGuire

Low-Level Software

Micho Radovnikovich

High-Level Software

Lincoln Lorenz

Electrical

Todd Perkins

Scott Marginet
Paul Abdo

Mike Truitt

Pranab Bade
Mike Truitt
Paul Abdo

Varun Vummaneni
Pranab Bade

Kevin Hallenbeck
Micho Radovnikovich

Figure 1: Chart outlining the team’s organization.

Concept

Requirements

Design

Implementation

Integration

Testing

Evaluation

Figure 2: V-Model design process.

4

Figure 4: Chassis with cover

Figure 3: Botzilla's chassis

� Robot Operating System (ROS) software integration (Section 5.3)

� Mapping of the robot’s environment (Section 6.1)

� D* Map-based path planning algorithm (Section 6.2)

� Custom H-Bridge design and fabrication (Section 4.1)

� Ackermann steering actuation on both front and rear wheels (Section 3.2)

� FPGA sensor data gathering and drive control system (Section 5.1)

3 Mechanical Design

3.1 Chassis

The chassis of the robot is a simple ladder style design. This

allowed for easy assembly and a rugged structure. The payload carrier

is under the main chassis, allowing the quick installation and removal

of the competition payload. A significant portion of Botzilla is built

from aluminum in order provide weight reductions. The use of steel

was kept to a minimum; used only when strength or ease of

fabrication dictated the need for it. The use of polycarbonate

Plexiglas and hollowing of the

driveshafts is another attempt to reduce the overall weight of Botzilla.

The use of lightweight tubing for the camera mount also helped to

reduce the mass of the robot. Further weight reduction is planned for

the near future in the area of hubs and further thinning of the

driveshafts. All of this was done with minimal weight and

dependability as the main design criteria.

5

3.2 Drive Train

There are two significant design features implemented in the

chassis of Botzilla. The robot features all-wheel drive and double

Ackermann steering, where the front and rear wheels are

independently rotated by a linear actuator. The use of four-wheel

drive allows for consistent locomotion while traversing irregular

terrain. The four-wheel drive also allows the robot to ascend steep

inclines with relative ease. This design allows the use of a

relatively closed pattern tire while still providing excellent traction

under adverse conditions, thereby minimizing the impact on the environment.

The double Ackermann steering is similar to that of a monster truck.

It allows both ends to be turned either independently or

simultaneously. A linear actuator drives the left side which is connected

to the opposite side through a tie rod link. The link has opposing

threads on the ends allowing toe adjustments to be made. The double

Ackermann steering allows for decent mobility in confined quarters

while maintaining control of Botzilla under extreme conditions.

4 Electrical Design

4.1 H-Bridges

Botzilla’s H-bridges are completely custom-designed PCBs. Based on past experience with other

H-bridges such as IFI’s Victor series, it was desired to use an H-bridge that is more flexible, robust,

and capable of chopping the motor power at a much higher frequency. Key features of the H-bridges

are:

� Reverse battery protection

� On-board fuses

� Fan control

� Current sense

� Temperature monitoring

� Serviceable components
Figure 7: Custom H-bridge

Figure 6: Drive axle

Figure 5: Steering mechanism

6

The reverse battery protection utilizes a P-channel 4 mΩ low Rds-on power MOSFET. The current

sense uses a Hall-effect sensor to monitor current without having the resistance drop of a typical

current sense resistor arrangement. Temperature monitoring ensures that the H-bridge is kept within a

safe thermal window, and allows dynamic fan control to save power. The H-bridge itself is composed

of N-channel MOSFETs, with each leg paralleled to further reduce Rds-on. A conventional single-

channel PWM signal controls the speed and direction of the H-bridge output.

4.2 Sensors

Botzilla is equipped with an array of sensors that allow it to detect obstacles around it, compute its

location, heading and speed, and be operated in a safe and reliable manner. The sensor array consists

of:

� NovaTel FlexG2-Star GPS receiver, which provides accurate GPS fixes within 1 meter

� Honeywell HMC5843 digital compass, which provides raw three-axis magnetometer data

from which tilt-corrected heading measurements can be made

� Analog Devices ADIS16350 six-axis IMU

� U.S. Digital E3 optical wheel encoders, providing wheel speed data for closed loop drive

control, as well as odometry for the mapping algorithm

� DX5E wireless aircraft joystick, whose standard RC signals are used for embedded manual

control, as well as a wireless E-Stop.

4.3 Computing Hardware

Botzilla’s computing system is distributed between a Dell Latitude E5410 laptop running Ubuntu

and ROS (Section 5.3), and a Xilinx Spartan3E FPGA, employing a MicroBlaze soft processor and

custom hardware written in VHDL (Section 5.1). The two communicate with each other over a single

RS232 link, through which the FPGA transmits sensor data to the computer, and the computer

transmits motor control messages to the FPGA.

For the JAUS challenge, an external computer communicates with the Ubuntu laptop over Wi-Fi,

and relays the processed JAUS commands. The Ubuntu laptop also responds back with the data

reports necessary to satisfy the requirements of the JAUS challenge.

4.4 Power Distribution

Botzilla’s 24V power source is derived from four 12V AGM lead acid batteries, arranged with two

parallel sets in series, with a total charge capacity of about 60 AH. The 24 volts are wired directly to

7

the H-bridges, which then pulse power to the motors according to the PWM control signals coming

from the FPGA. The FPGA board takes a 12 volt power input, coming from a switching DC-DC step

down converter. The FPGA board has its own on-board switching regulator that powers the small

sensors connected to it, as well as the Spartan3E itself.

4.5 Safety Considerations

Botzilla is a very powerful vehicle with lots of torque and is capable of slightly over 10 mph. As

such, it has potential to be dangerous. Therefore, many precautions were taken into account when

designing the emergency stop system, where many layers of protection exist. Besides the conventional

turn-to-release E-stop switch, the DX5E joystick is capable of disabling the motor output wirelessly

from up to a couple hundred feet away. In addition, the drive control system automatically turns off

the motors if it fails to receive commands from the computer after a short time, and a software-handled

joystick functions as a dead-man switch for the vehicle when in testing mode.

5 Software Design

This section describes the computing system used on Botzilla. As described in Section 4.3, all

computation is distributed between a laptop and a FPGA. A diagram of how the major software

elements interact with each other is shown in Figure 10, and the subsequent sections discuss them in

detail.

24 VDC

H-Bridges

12V DC-DC

Motors

FPGA

Figure 8: High-level diagram of how power is distributed to the built-in components

8

5.1 Low-Level Hardware/Software

All of Botzilla’s low-level

functionality is implemented on a

single 1.2 million gate-equivalent

Spartan 3E FPGA, utilizing custom

hardware components developed in

VHDL, and a Xilinx MicroBlaze

soft processor running hand-written

C code. The system was designed

to process all the data from the

sensors listed in Section 4.2, extract

the measurements, assemble the

data into a convenient packet and

transmit it all to the computer. At

the same time, the drive control

algorithms interpret high-level

vehicle motion commands from the

computer and apply closed-loop steering control to the motors. Figure 9 shows a block diagram of the

FPGA architecture.

� Data Gathering

Custom hardware was developed in VHDL to gather the data from all the sensors. These hardware

components consist of:

� Six parallel PWM channels, capable of independent control of each motor

� One NMEA GPGGA message parsing component that extracts the vehicle’s current GPS

coordinates from a continuous stream of ASCII data from the receiver

� One I2C controller to request data from the compass and extract the heading data from the

resulting transmissions

� Two SPI controllers used to interface to the IMU and external A/D hardware module

Xilinx
MicroBlaze

Soft Processor

P
ro

c
e

s
s

o
r

B
u

s

LEDs and
7 Segment Display

PWM Drivers

GPS Parser

I2C Controller

SPI Controller

Input Capture

Diagnostics

Serial

Port

Figure 9: Custom FPGA Architecture

9

� Eight parallel input capture channels to grab

quadrature data from the four optical wheel

encoders

All the custom hardware is interfaced to the

MicroBlaze processor by means of a 32-bit wide

processor bus, clocked at 50 MHz. The processor

addresses each hardware component in sequence and

refreshes its measurement from each sensor. At a rate

of 20 Hz, it packages all the data into a 22-byte packet

and transmits it to the computer.

� Drive Control

Botzilla’s drive system consists of four DC motors

rotating the wheels of the vehicle, and two DC linear

actuators controlling the steering mechanism on the

front and rear wheels. Making use of the wheel encoder

data being gathered by the FPGA, the MicroBlaze

processor applies PI control to the wheel motors to

match speed commands from the computer. Likewise,

the potentiometers on the steering motors are used by

the MicroBlaze processor to apply a lead-lag

compensator to track angular position commands from

the computer.

5.2 High-Level Software

� Lane and General Obstacle Detection

Detecting obstacles and lines in the robot’s view

requires a robust vision system able to differentiate lines

and obstacles from the grass background. In direct

contrast to making a robust system, the robot’s vision

system also needs to be responsive enough to react to

the changing scenery as the robot navigates through the course. Any algorithms used will have to

satisfy both constraints.

Figure 10: Block diagram of software
component interaction

Drive Control

Reactionary
Fuzzy Control

Mapping

D* Path Plan

Kalman

Filtering

De-Warping

HSV

Multiple

Detectors

Voting

10

To satisfy the requirements of robust differentiation and good

responsiveness a system was developed that uses multiple fast

algorithms that vote on whether or not an obstacle is detected. The

system consists of three stages: pre-processing, detection, and voting.

Pre-processing smoothes the image and converts it to the HSV

domain. In the HSV domain, shadows are present mainly in the value

component, setting this to a fixed number allows object detection

algorithms to be shadow agnostic. The second stage, detection, is

performed using multiple simple algorithms which later are combined

to vote on the presence of obstacles on a per-pixel basis.

Each algorithm outputs a binary image that is its vote for each

pixel on the pixel grid. Algorithms that are used consist of standard

implementations of Canny edge detection, auto thresholding, frame differencing, and a custom

developed median windowing algorithm. The final stage, voting, takes each voting image and

determines the majority. During testing the vision proved reliable enough to replace the lidar

functionality entirely.

� Image Transformation

In order to create a monocular vision

system capable of acting as a suitable lidar

replacement, the distance perception of such a

system must be very accurate. A very general

system to do these transformations was

formed, and only assumes that the objects

being detected are on a flat surface, which is a

realistic assumption for situations like IGVC.

By making some simple calibration

measurements, such as the height and pitch of the camera, etc., a transformation is defined to project

individual pixels into an azimuth and zenith rotational axis offset from the center of the camera. A

non-linear trigonometric transformation function is then used to project the angle offsets down onto the

ground plane. These points are then rotated and shifted into the vehicle’s coordinate frame to simulate

Cartesian obstacle location data obtained from a lidar scan. An illustration of this imitated lidar scan is

shown in Figure 12. More details about the transformation can be found in [2].

Figure 12: ROS visualization of the imitated lidar scan

Figure 11: Example of voter-
based obstacle detection

11

� Kalman Filter Sensor Fusion

The role of the Kalman Filter is to input the raw GPS fix, compass and wheel encoder data and fuse

the readings together to provide a better estimate of the vehicle’s position and heading angle in the

global frame. Sensor fusion with a Kalman Filter is a very powerful technique, since it is capable of

modeling the variance of measurement signals and then deciding how much to “trust” each sensor to

come up with a very nice estimate. Specifically, the Kalman Filter on Botzilla is designed to:

� Use GPS course-over-ground heading reading to correct the bias in the compass heading

measurement

� Use compass heading measurement to eliminate the meandering GPS heading when

traveling slowly or during a GPS outage

� Use wheel encoder measurements to provide odometry that helps filter wandering GPS data

5.3 ROS Integration

Botzilla’s high level software system uses Robot Operating System (ROS) as its base interfacing

layer. ROS provides many features that aided efficient development of an IGVC ready robot including:

pre-built robotics libraries, standard sensor drivers, support for simple message passing between

processes, debugging and system visualization facilities, and dynamic reconfiguration. Additionally,

the wealth of documentation for different features in ROS allowed the team to understand and

implement non-trivial concepts quickly.

5.4 Logging

One of the many features that ROS has built in software libraries for is a logging system.

This allows the team to log any of the data being passed in the system, including camera, GPS, and

other sensor data. In typical use, the robot is human driven along a course similar to that of IGVC

while recording data. The “raw” data is later played back using another component of the logging

system, which emulates the data stream of real sensors. This enables the software team to test new

algorithms and gauge their effect on the full system while sitting at their desks.

5.5 JAUS

The JAUS Protocol was implemented in Microsoft Visual Basic .NET, where a class was written

for each JAUS message. In each class, parameters can be set, an array of bytes can be parsed, and the

message can be converted into a byte array. A class was written for each JAUS service as well.

Services that require inherits are passed a handle to the required services on creation.

12

To test the JAUS implementation, a separate COP simulator was programmed using the same

language and classes. The COP simulator can manually send all of the messages required for the

competition and display the messages received. The COP simulator also has a map on which way-

points can be set and graphed, and the position history of the robot can be plotted. All raw packets are

saved to a debug window and a log file to help diagnose problems.

6 Artificial Intelligence

6.1 Mapping

Botzilla uses mapping to recall where it has been so that it can decide its route in the autonomous

challenge. The mapping algorithm used is provided in the karto package from ROS. The package uses

a technique called sparse bundle adjustment for fast and accurate determination of a map from scan

and localization data [3]. The algorithm is capable of loop closure, which allows the repeated paths to

be detected as the same path to improve path detection. This will be used to remember the obstacles

encountered on previous runs for more accurate path planning on consequent runs.

6.2 Path Planning

The path planning system integrates a short-term reactionary obstacle avoidance system based on a

fuzzy rule-based algorithm, and a long-term deliberate obstacle avoidance system based on the map

output from Section 6.1.

� Reactionary Fuzzy Logic Controller

The role of the reactionary component of the path planning system is to provide effective first-time

navigation of an unknown environment toward the goal point, and to augment the map-based path

planning algorithm and adapt to uncertainties and error in the map.

This reactionary system is implemented using the very simple, yet incredibly powerful technique of

fuzzy logic control. A set of qualitative rules is formed based on how the vehicle should respond in

certain situations. By assigning quantitative values to the relative degree to which the qualitative

statements describe the current situation, a real-world decision can be arrived at to best satisfy the

rules.

The goal point, as well as the imitated lidar scan (Section 5.2) are input to the fuzzy system, where

the location of the goal relative to the vehicle and the immediate occupancy of the vehicle’s

surroundings govern both the steering and velocity through the set of fuzzy rules.

13

� Deliberate Map Navigation

To compute an optimal path through the map of the environment, a D* algorithm ROS package is

employed, developed by Michael Otte of the University of Colorado [1]. The package takes in a goal

point, standard occupancy grid message, and a pose estimate of the robot, and computes an optimal

path through the given map. This path is broadcasted to the rest of the system via a standard

navigation stack message.

 However, to account for error in the map and other uncertainties, proper combination with the

reactionary system is necessary. To solve this, critical points of the D* path are chosen as intermediate

waypoints to the reactionary system.

7 Performance Predictions

� Maximum Speed

Botzilla’s motors spin at 157 RPM at nominal load, so combined with 15 inch diameter wheels, the

resulting maximum speed is 10.3 mph. This estimate correlates with the observed performance.

� Ramp Climbing Ability

At nominal load, the drive motors provide 101 in-lbs of torque. Assuming a realistic vehicle

weight of 175 lbs, this corresponds to a max slope of 18 degrees. However, experiments have shown

that Botzilla can handle much steeper slopes, up to about 30 degrees, although not at the nominal load

of the motors.

� Reaction Time

The ROS system running on the laptop gathers new sensor readings from the FPGA at 20Hz, and

processes camera frames and extracts obstacle locations at 15 frames per second. The artificial

intelligence systems were designed to be able to handle this frequency easily, thereby allowing the

robot to make new decisions at the slowest sensor sampling rate 15 Hz = 66.7 ms.

� Battery Life

The AGM batteries on Botzilla provide a total of 60 AH. The sensors and FPGA consume 2 amps.

Experiments have shown that the steering motor current draw averages 3 amps under normal operating

conditions, and that the drive motors consume a total of 25 amps maximum in a grass environment

typically encountered at IGVC. Based on these observations, total battery life is approximately 2

hours.

14

� Obstacle Detection Range

With the configuration of the camera, obstacles can be detected up to a maximum of 24 feet away,

although it was experimentally determined that vision measurement data becomes most reliable within

17 feet. The camera configuration also makes the front of the vehicle visible. This allows for the

vision system to detect lines and obstacles up to 3 feet to either side of the front wheels, thereby

minimizing the size of critical blind spots.

� GPS Accuracy

Under normal conditions, the Novatel FlexPackG2-Star GPS receiver is accurate to within 1 meter,

which is enough positional accuracy to reach the small waypoints on the GPS Challenge

course. However, since the mapping algorithm (Section 6.1) is dependent on both the position and

more noisy ground heading estimate of the GPS, the Kalman Filter (Section 5.2) is used to fuse the

GPS with the other sensors.

8 Cost Analysis

A breakdown of the cost of the components on Botzilla is shown in Table 1.

Table 1: Cost breakdown of components

Item Cost Cost to Team

FlexG2-Star GPS Unit $1,000 $1,000

SICK LMS-200 Lidar $6,000 $01

Dell Latitude E5410 Laptop $800 $800

Analog Devices ADIS16350 IMU $550 $02

Other Sensors $400 $400

(4) 12V AGM Batteries $375 $03

Power Electronics $600 $600

Fiberglass Body $2,000 $04

Electromechanical Components $1,000 $1,000

Frame Materials $1,000 $1,000

Total $14,225 $5,300

1 Re-used from previous vehicle
2 Donated from Dataspeed, Inc.
3 Part of a larger donation from Battery Giant, Rochester Hills
4 Custom-made and donated by Sankuer Composite Technologies

15

9 Conclusion

Botzilla has proven to be very rugged, efficient and reliable, performing well while driving on any

kind of terrain. The new artificial intelligence design shows promising results, and the Oakland

University team has great confidence going into this year’s competition.

Acknowledgements

The Oakland Robotics Association would like to thank several people and organizations. The team

thanks Pete Taylor and Derrick Hurley for their insights during the fabrication phase. The engineering

faculty of Oakland University engineering was invaluable, specifically KC Cheok, Louay Chamra, Len

Brown, Markhanna McBurrows, Brenda Bond, in the development of Botzilla. The robot would not

have been possible without the gracious support of the following sponsors, Battery Giant, Sankuer

Technologies, Dataspeed, the SAFB and the Cheerful Dollar.

References

[1] Otte, M.W.; Grudic, G.; , "Extracting paths from fields built with linear interpolation," Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on , vol., no., pp.4406-
4413, 10-15 Oct. 2009
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354775&isnumber=5353884

[2] M. Radovnikovich, P. K. Vempaty, and K. C. Cheok, “Auto-preview camera orientation for
environment perception on a mobile robot,” in SPIE Conference on Intelligent Robots and
Computer Vision, 2010.

[3] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent, “Sparse pose
adjustment for 2d mapping,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), 2010.

